skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jirón, Vanessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Microscopic active droplets are of interest since they can be used to transport matter from one point to another. In this work, we demonstrate an approach to control the direction of active droplet propulsion by a photoresponsive cholesteric liquid crystal environment. The active droplet represents a water dispersion of bacterialBacillus subtilismicroswimmers. When placed in a cholesteric, a surfactant-stabilized active droplet distorts the local director field, producing a point defect-hedgehog, with fore-aft asymmetry, and allows for the chaotic motion of the bacteria inside the droplet to be rectified into directional motion. When the pitch of the cholesteric confined in a sandwich-like cell is altered by light irradiation, the droplet trajectory realigns along a new direction. The strategy allows for a non-contact dynamic control of active droplets trajectories and demonstrates the advantage of orientationally ordered media in control of active matter over their isotropic counterparts. 
    more » « less
  2. Azobenzene-based chiral dopants in cholesteric liquid crystals are of interest since the properties they induce in the liquid crystal could be tuned photochemically. Here, we use a substituted binaphthyl with a halogenated azobenzene as a chiral dopant to induce a photoswitchable cholesteric phase in the nematic 4-n-pentyl-4’-cyanobiphenyl. The azobenzene group chemically attached to the chiral dopant undergoes isomerization from trans to cis upon irradiation with green light (wavelength 535 nm), and from cis to trans upon irradiation with blue light (wavelength 450 nm). The transition between the two isomers causes helicity inversion of the cholesteric, with a left-handed trans isomer and a right-handed cis isomer. We report on the kinetics of photoisomerization of both processes (trans-to-cis and cis-to-trans) in the nematic host by following the pitch evolution over time. We show that the kinetic mechanism corresponds to a two-step process: a first-order isomerization followed by a second-order autocatalytic isomerization. This mechanism differs from the typical first-order kinetics for cis-to-trans or trans-to-cis isomerization in azobenzenes. The autocatalytic process is attributed to interactions between the chiral dopant and the nematic host. 
    more » « less